
Spread Options 02-14-11
N. T. Gladd

Initialization: Be sure the files NTGStylesheet2.nb and NTGUtilityFunctions.m is are in the same

directory as that from which this notebook was loaded. Then execute the cell immediately below by

mousing left on the cell bar to the right of that cell and then typing “shift” + “enter”. Respond “Yes” in

response to the query to evaluate initialization cells.

In[18]:= SetDirectory[NotebookDirectory[]];

(* set directory where source files are located *)

SetOptions[EvaluationNotebook[], (* load the StyleSheet *)

StyleDefinitions → Get["NTGStylesheet2.nb"]];

Get["NTGUtilityFunctions.m"]; (* Load utilities package *)

1 Introduction
Spread options are contingent claims on the difference in the prices of two or more underliers. Such

contingencies arise in quite natural ways and have relevance in many financial contexts. For example,

in 2010 I worked in the utility industry where a key concern is the spread between the price of power

and the cost of the fuel used to generate that power— the so-called spark spread http://en.wikipedi-

a.org/wiki/Spark_spread. Other examples related to the commodity world are the crack spread (oil

refining) and the crush spread (soybean processing). In the financial world there is the TED spread

(interest rates/ credit risk). Many equities derivatives involve contingencies on spreads. In short, relative

differences are important in the financial world

Here, I will summarize some derivations and calculations I’ve performed that are relevant to spread

options. The examples are simple in this first treatment. Notebooks on more details aspects of spread

options will be posted in the future. In particular, the following valuation models will be discussed and

derived

 Numerical double quadrature

 Exact special case - Margrabe exchange option

 Bachelier’s approximation

 Kirk’s approximation

To simplify the discussion, I will consider spreads between two stocks whose price processes follow

geometric Brownian motion. That is the classical Black-Scholes framework and a good place to start.

The payoff on a call spread option is

Spread Options 02-14-11.nb 1

copyright © N T Gladd 2016

C(T) = max(S1(T) - S2(T) - K, 0) (1)

where S1 and S2 denote the two stock prices, K is the strike price for the option, and T is the expiry. I

consider a European style option so exercise is possible only at T. The dynamics are

dSi

Si

= r dt - σi dzi,

Si(T) = Si(t) exp r -
σi

2

2
(T - t) + ϵi σi T - t 

[ϵ1 ϵ2] = dt

(2)

where the ϵi are correlated normal random variables. In this model, the stocks are assumed to have

constant volatilities and correlation. The inclusion of term structure for volatility and correlation is an

important for practical applications but would complicate this initial exposition.

The option theoretic fair value is

C(t) = ⅇ-r (T-t) Q[max(S1(T) - S2(T) - K, 0)]

= ⅇ-r (T-t)


0

∞

ⅆS1 
0

∞

ⅆS2 fQ(S1(T), S2(T))max(S1(T) - S2(T) - K, 0)

(3)

where fQ(S1, S2) is the joint probability distribution for S1 and S2 under the risk neutral probability

measure.

Calculations are simplified if the random variables ϵi are chosen as the independent variables. Also, I

choose t = 0 to simplify matters.

C(0)

ⅇ-r T
= 

-∞

∞

ⅆϵ1 
-∞

∞

ⅆϵ2 f (ϵ1, ϵ2)max(S1(ϵ1) - S2(ϵ2) - K, 0) (4)

The random variable ϵ1 and ϵ2 are correlated, [η1 η2] = ρ, but a Cholesky decomposition (see below)

can be used to express the option price in terms of uncorrelated random variables η1 and η2

C(0)

ⅇ-r T
= 

-∞

∞

ⅆη1 
-∞

∞

ⅆη2 f (η1) f (η2)max(S1(η1) - S2(η2) - K, 0) (5)

where

S1(T) = S1(0) exp r -
σ1

2

2
T + η1 σ1 T 

S2(T) = S2(0) exp r -
σ2

2

2
T + η1 ρ + η2 1 - ρ2 σ2 T 

[η1 η2] = 0

(6)

2 Valuation via double numerical quadrature
A straightforward way to value a spread option is to simply numerically evaluate the double integral in

2 Spread Options 02-14-11.nb

copyright © N T Gladd 2016

equation (5). The integrand has the form

S1(0) 100.00

S2(0) 100.00

σ1 0.50

σ2 0.25

ρ 0.80

r 0.020

K 5.00

T 1.00

Figure 1: Integrand of spread option

and the double integral (5) can easily be performed using Mathematica’s NIntegrate. Here I show the

fair value of a call spread C on the correlation parameter.

-0.5 0.0 0.5 1.0
ρ0

5

10

15

20

25

30

C
Spread call option dependence on ρ

S1(0) 100.00

S2(0) 100.00

σ1 0.50

σ2 0.25

r 0.020

K 5.00

T 1.00

Figure 2: Dependence of call spread option on correlation.

When two stocks are highly correlated, the spread option is like an option on a single underlier. When

the stocks are decorrelated, it is much less likely that their difference is less than the strike— the price

of the option on the difference is correspondingly higher.

When practical consideration require that many spread options be valued, or when all of the relevant

sensitivities (greeks) must be calculated, direct numerical double integration is too slow. One way to

speed the calculation is to note that one of the integrations in equation (5) can be performed analyti-

cally. This procedural results in a single numerical integral that must be performed over a complicated

integrand similar to the Black Scholes formula. While this method is useful, I will reserve its develop-

ment for a later notebook. Instead, I review some of the classical approximate methods for spread

options.

Spread Options 02-14-11.nb 3

copyright © N T Gladd 2016

3 An exact solution — the Margrabe exchange option.
The product or ratio of two lognormally distributed random variable is lognormal—an observation that is

key to the following exact solution for a special case of the spread option.

When the strike K is set to zero in equation (3), the option becomes that of exchanging underlier 2 for

underlier 1. This is a classical exchange option first considered by William Margrabe. The payoff is

Cexchange(t) = ⅇ-r (T-t) Q[max(S1(T) - S2(T), 0)]

= ⅇ-r (T-t) QS2(T)max
S1(T)

S2(T)
- 1, 0 

(7)

If S2 is used as a numeraire (measure of value), and the expectation is valued under the T-forward

measure.

Cexchange(t)

S2(t)
= ⅇ-r (T-t) T

S2(T)maxS1(T)

S2(T)
- 1, 0

S2(T)
 = ⅇ-r (T-t) Tmax

S1(T)

S2(T)
- 1, 0  (8)

and the expectation is taken over the ratio of two lognormally distributed variables. The expectation in

equation (8) is valued just as for a Black-Scholes vanilla call option to obtain

Cexchange(t) = ⅇ-r (T-t) S2(t)(d) - S1(t)  d - σ T - t (9)

where

d =
lnS1

S2
 +

σ2

2
(T - t)

σ T - t

σ = σ1
2 - 2σ1 σ2 ρ + σ2

2

(10)

Below I compare the double quadrature call spread against the Margrabe closed form which obtains for

K = 0. Also, I take the interest rate to be zero because the Margrabe option is to exchange one equity

for another and discounting of fair value is not required.

-0.4 -0.2 0.2 0.4
ρ

7.5

8.0

8.5

9.0

9.5

10.0

10.5

Comparing Double Quadrature (black line)

with Margrabe formula (circles)

T 1.00

S1(0) 100.00

S2(0) 100.00

σ1 0.20

σ2 0.10

ρ 0.00

r 0.000

4 Spread Options 02-14-11.nb

copyright © N T Gladd 2016

Figure 3: Comparison of the Margrabe formula with double quadrature. As should be expected, the agreement

is very close.

4 Bachelier approximation
Louis Bachelier was a remarkable mathematician and waay ahead of his time. While conferences are

now held in his honor http://www.bfs2010.com/, his work was unappreciated during his lifetime. Bache-

lier proposed modeling stock prices with a stochastic Brownian process in 1900, some five years before

Einstein applied Brownian motion to atomic and molecular motion.

Within the context of spread options, the Bachelier approximation consists of assuming the spread

between stock prices, δS = S1 - S2 can be modeled by the Gaussian process. I sketch the derivation of

the expression for a call spread option under the Bachelier approximation. Here, I follow the develop-

ment in the working paper by Caramona and Durrleman 2009 but use Mathematica to perform some of

the required calculations.

d δS = μ δS dt + σB(t) dzt (11)

For this process we have that the first two moments of the distribution for δS are given by

[δS(t)] = N = δS0 ⅇ
μ t (12)

ar(δS) ≡ VN(t) = 
0

t

σB
2(u) ⅇμ (t - u) ⅆzu (13)

The spread option will be calculated by writing

δS t = N(t) + VN(t) ϵ (14)

where ϵ is normally distributed.

The parameters of this normal model are obtain by equating these moments to the corresponding

moments of the S1(t) - S2(t) where S1 and S2 are lognormally distributed. Below I calculate

[S1 (t) - S2(t)] ≡ LN = (S10 - S20) ⅇ
μ t (15)

ar[S1 (t) - S2(t)] ≡ VLN(t) = ⅇ2 μ t -2 S20 S10 ⅇ
ρσ1 σ2 t - 1 + S10

2 ⅇσ1
2 t - 1 + S20

2 ⅇσ2
2 t - 1 (16)

Thus, we approximate

δS t = LN(t) + VLN(t) ϵ (17)

in which case

C(0) = ⅇ-r T Q(max(S(T) - K, 0))

= ⅇ-r T

-∞

∞

f (ϵ)max LN(T) + V LN (T) ϵ - K, 0 ⅆϵ

= ⅇ-r T

ϵ*

∞

f (ϵ) LN(T) + VLN(T) ϵ - K ⅆϵ

(18)

where

Spread Options 02-14-11.nb 5

copyright © N T Gladd 2016

ϵ* =
K - LN(T)

VLN(T)
(19)

Then

C(0) = ⅇ-r T (LN(T) - K) 
ϵ*

∞

f (ϵ) ⅆϵ + VLN(T) 
ϵ*

∞

f (ϵ) ϵ ⅆϵ

= ⅇ-r T (LN(T) - K)(-ϵ*) + VLN(T) f (ϵ*)

(20)

Below I compare the Bachelier approximation against the brute force double quadrature model.

5 10 15 20
K

3

4

5

6

7

C

Comparing Bachelier Approximation (black line)

with double quadrature (circles)

K 20.00

T 1.00

S1(0) 100.00

S2(0) 100.00

σ1 0.20

σ2 0.10

r 0.020

Figure 3: Comparison of the Bachelier approximation with double quadrature.

This result indicates that the Bachelier approximation is breaking down as the strike is increased. This

can be explained as follows. Simulation of the distribution S1(T) - S2(T) shows that approximating it with

a moment matched normal distribution is reasonable for the center of the distribution, but not accurate

in the tails. For larger values of the option strike, the expected fair value of the spread payoff is ever

more dependent on the tail of the spread distribution. Thus the discrepancy between the Bachelier

approximation and the brute force numerical calculation becomes more noticeable.

5 Kirk’s approximation
Another widely used approximation for spread options follows from writing

C(0)

ⅇ-r T
= Q[max(S1(T) - S2(T) - K, 0)]

= Q(S2(T) + K)max
S1(T)

S2(T) + K
- 1, 0 

= QY(T)maxZ (T) - 1, 0

(21)

Then, Y(T) = S2(T) + K is chosen as a numeraire and the expectation is taken in the T-forward measure

C(0)

ⅇ-r T Y(t)
= T

Y(T)maxZ (T) - 1, 0

Y(T)
 = TmaxZ (T) - 1, 0 (22)

6 Spread Options 02-14-11.nb

copyright © N T Gladd 2016

The Kirk’s approximation (E. Kirk, Correlation in the energy markets, in managing energy price risk,

Risk Publications 1995) consists of approximating Z(T) = S1(T)

S2(T)+K
 with a lognormal distribution, which is

only exactly true for K = 0. This is equivalent to choosing the Z dynamics to be

dZ

Z
= dt μZ + dzt σZ (23)

Below, I show that

μZ = r - r (24)

σZ  σ1
2 - 2 ρ σ1 σ2 + σ2

2 (25)

with

r  r
S2

Y
= r

S2

S2 + K

σ2 σ2

S2

Y
= σ2

S2

S2 + K

(26)

Then, by analogy with Black-Scholes

C(0)

ⅇ-r T Y(0)
= Z(0) ⅇμZ T  - dZ - σZ T - (-dZ) (27)

where

dZ = log(1 /Z(0)) - μZ -
σZ

2

2
T  σZ T (28)

and, so

C(0) = S1(0) ⅇ
(μ-r) T  - dZ - σZ T - (S2(0) + K) ⅇ-r T (-dZ) (29)

Detailed calculations

Figure 1,2 and discussion

Recasting the integral (4) into (5). The joint distribution function for ϵ1 and ϵ2 is

In[20]:= Module[{μ, σ, temp},

μ = {0, 0};

σ = {{1, ρ}, {ρ, 1}};

temp = PDF[MultinormalDistribution[μ, σ], {ϵ1, ϵ2}] // Simplify;

temp // PowerExpand]

Out[20]=
ⅇ

ϵ12+ϵ22-2 ϵ1 ϵ2 ρ

2 -1+ρ2

2 π 1 - ρ2

Spread Options 02-14-11.nb 7

copyright © N T Gladd 2016

It is convenient to re-express ϵ1 and ϵ2 in terms of uncorrelated random variables. This is accomplished with

In[21]:= A = Simplify[CholeskyDecomposition[{{1, ρ}, {ρ, 1}}], {ρ ∈ Reals}]

Out[21]= {1, ρ}, 0, 1 - ρ2 

The correlated ϵ1 and ϵ2 are then expressed in terms of the uncorrelated η1 and η2 by

In[22]:= {ϵ1, ϵ2} == A . {η1, η2}

Out[22]= {ϵ1, ϵ2} ⩵ η1, ρ η1 + 1 - ρ2 η2

I visualize the integrand of equation (5)

8 Spread Options 02-14-11.nb

copyright © N T Gladd 2016

In[23]:= Module{S10 = 100.00, S20 = 100, K = 5., r = 0.02, σ1 = 0.5,

σ2 = 0.25, T = 1., ρ = 0.8, ρb, ηMax = 4, lab, params, g1, g2},

lab = Style["Spread option integrand", Bold];

ρb = 1 - ρ
2 ;

params = {{"S1(0)", S10, {5, 2}}, {"S2(0)", S20, {5, 2}},

{"σ1", σ1, {5, 2}}, {"σ2", σ2, {5, 2}}, {"ρ", ρ, {5, 2}},

{"r", r, {5, 3}}, {"K", K, {5, 2}}, {"T", T, {5, 2}}};

g1 = Plot3DMax S10 Exp r -
σ12

2
T + σ1 T η1 -

S20 Exp r -
σ22

2
T + σ2 T ρ η1 + ρb η2 - K , 0

f[η1] f[η2], {η1, -ηMax, ηMax}, {η2, -ηMax, ηMax},

AxesLabel → {Style["η1", Bold], Style["η2", Bold]},

PlotLabel → Style[lab, Bold],

Mesh → False, Boxed → False,

PlotRange → All,

ImageSize → 300;

g2 = ParameterTable[params];

Grid[{{g1, g2}}, Frame → True]

Out[23]=

S1(0) 100.00

S2(0) 100.00

σ1 0.50

σ2 0.25

ρ 0.80

r 0.020

K 5.00

T 1.00

The integral (5) may be easily evaluated.

Spread Options 02-14-11.nb 9

copyright © N T Gladd 2016

In[26]:= Off[NIntegrate::slwcon];

Module{S10 = 100.00, S20 = 100, K = 5., r = 0.02, σ1 = 0.2, σ2 = 0.1,

T = 1., ρ = 0.8, ηMax = 4, lab, params, results, fit, g1, g2},

lab = Style["Spread option integrand", Bold];

params = {{"K", K, {5, 2}}, {"T", T, {5, 2}}, {"S1(0)", S10, {5, 2}},

{"S2(0)", S20, {5, 2}}, {"σ1", σ1, {5, 2}}, {"σ2", σ2, {5, 2}}, {"r", r, {5, 3}}};

results =

{#, CallSpreadDoubleQuadrature[K, T, S10, S20, σ1, σ2, #, r] } & /@

Range[-0.9, 0.9, 0.1];

fit = Interpolation[results];

g1 = Plot[fit[ρ], {ρ, -0.9, 0.9},

PlotRange → {{-1, 1}, Automatic}, AxesOrigin → {-1, 0},

PlotStyle → BLACK,

PlotLabel → Stl["Call spread option dependence on ρ"],

AxesLabel → {Stl["ρ"], Stl["C"]}, ImageSize → {400, 200}];

g2 = ParameterTable[params];

Grid[{{g1, g2}}, Frame → True] 

Out[26]=

-0.5 0.0 0.5 1.0
ρ0

2

4

6

8

10
C

Call spread option dependence on ρ

K 5.00

T 1.00

S1(0) 100.00

S2(0) 100.00

σ1 0.20

σ2 0.10

r 0.020

In[24]:= Clear[CallSpreadDoubleQuadrature];

CallSpreadDoubleQuadrature[K_, T_, S10_, S20_, σ1_, σ2_, ρ_, r_] :=

Module{ηMax = 4, ρb},

Exp[-r T] NIntegrateMax S10 Exp r -
σ12

2
T + σ1 T η1 -

S20 Exp r -
σ22

2
T + σ2 T ρ η1 + 1 - ρ

2
η2  - K , 0

f[η1] f[η2], {η1, -ηMax, ηMax}, {η2, -ηMax, ηMax},

Method → {Automatic, "SymbolicProcessing" → 0}

10 Spread Options 02-14-11.nb

copyright © N T Gladd 2016

Margrabe

In[35]:= Off[NIntegrate::slwcon];

Module{S10 = 100.00, S20 = 100, K = 0, r = 0.0, σ1 = 0.2, σ2 = 0.1,

T = 1., ρ = 0., ηMax = 5, lab, params, results, fit, Marg, g1, g2},

lab = Style["Spread option integrand", Bold];

params = { {"T", T, {5, 2}}, {"S1(0)", S10, {5, 2}}, {"S2(0)", S20, {5, 2}},

{"σ1", σ1, {5, 2}}, {"σ2", σ2, {5, 2}}, {"ρ", ρ, {5, 2}}, {"r", r, {5, 3}}};

results = {#, CallSpreadDoubleQuadrature[0, T, S10, S20, σ1, σ2, #, r]} & /@

Range[-0.5, 0.5, 0.25];

g1 = Plot[MargrabeExchange[T, S10, S20, σ1, σ2, ρ, r], {ρ, -0.5, 0.5},

Epilog → {OpenCircle /@ results}, AxesLabel → {Stl["ρ"], ""},

PlotLabel → Stl["Comparing Double Quadrature

(black line) \n with Margrabe formula (circles)"],

ImageSize → 300];

g2 = ParameterTable[params];

Grid[{{g1, g2}}, Frame → True]

Out[35]=

-0.4 -0.2 0.2 0.4
ρ

8

9

10

Comparing Double Quadrature (black line)

with Margrabe formula (circles)

T 1.00

S1(0) 100.00

S2(0) 100.00

σ1 0.20

σ2 0.10

ρ 0.00

r 0.000

In[27]:= Clear[MargrabeExchange];

MargrabeExchange[T_, S10_, S20_, σ1_, σ2_, ρ_, r_] :=

Module{d, σ},

σ = σ12 - 2 σ1 σ2 ρ + σ22 ;

d =

Log S10

S20
 +

σ2

2
T

σ T
;

Exp[-r T] S20[d] - S10d - σ T 

Bachelier

I illustrate how Mathematica can be used to directly calculate the moments of the spread of two lognor-

mal variables.

Spread Options 02-14-11.nb 11

copyright © N T Gladd 2016

In[36]:= w[1] = S10 Exp r -
σ1

2

2
t + σ1 t ϵ1 - S20 Exp r -

σ2
2

2
t + σ2 t ρ ϵ1 + ρ ϵ2

Out[36]= ⅇ
t ϵ1 σ1+t r-

σ1
2

2

S10 - ⅇ

t ρ ϵ1+ρ ϵ2 σ2+t r-
σ2
2

2

S20

Calculation of [S]

In[37]:= w[2] = Integrate[w[1] f[ϵ1] f[ϵ2], {ϵ1, -∞, ∞}, {ϵ2, -∞, ∞}]

Out[37]= ⅇr t S10 - ⅇ
1

2
t 2 r+-1+ρ2+ρ2 σ2

2
S20

In[38]:= w[3] = w[2] /. α1 → 1, α2 → 1, ρ → 1 - ρ
2
 // Simplify

Out[38]= ⅇr t S10 - S20

Calculation of ar[S]

In[39]:= w[4] = Integratew[1]2 f[ϵ1] f[ϵ2], {ϵ1, -∞, ∞}, {ϵ2, -∞, ∞} - w[3]2

Out[39]= ⅇt 2 r+σ1
2 S10

2 - ⅇ2 r t S10 - S20
2
- 2 ⅇ

1

2
t 4 r+2 ρ σ1 σ2+-1+ρ

2+ρ
2
 σ2

2
S10 S20 + ⅇt 2 r+-1+2 ρ2+2 ρ

2
 σ2

2 S20
2

In[40]:= w[5] = w[4] /. α1 → 1, α2 → 1, ρ → 1 - ρ
2
 // Simplify

Out[40]= ⅇ2 r t -1 + ⅇt σ1
2

 S10
2 - 2 -1 + ⅇt ρ σ1 σ2 S10 S20 + -1 + ⅇt σ2

2

 S20
2 

In[41]:= w[6] = w[5] /. {S10 → S10, S20 → S20, σ1 → σ1, σ2 → σ2, t → T}

Out[41]= ⅇ2 r T -1 + ⅇT σ12 S102 - 2 -1 + ⅇT ρ σ1 σ2 S10 S20 + -1 + ⅇT σ22 S202

In[42]:= Clear[CallSpreadBachelier];

CallSpreadBachelier[K_, T_, S10_, S20_, σ1_, σ2_, ρ_, r_] :=

Module{ΔS0, V, ϵΔS},

ΔS0 = S20 - S10;

V = ⅇ
2 r T

-1 + ⅇ
T σ12

 S102 - 2 -1 + ⅇ
T ρ σ1 σ2

 S10 S20 + -1 + ⅇ
T σ22

 S202;

ϵΔS =
K - ΔS0 Exp[r T]

V
;

Exp[-r T] ΔS0 Exp[r T] - K [-ϵΔS] + V f[ϵΔS]

12 Spread Options 02-14-11.nb

copyright © N T Gladd 2016

In[44]:= Off[NIntegrate::slwcon];

Module{S10 = 100.00, S20 = 100, K = 20, r = 0.02, σ1 = 0.2, σ2 = 0.1,

T = 1., ρ = 0.5, ηMax = 4, lab, params, results, fit, g1, g2},

params = {{"K", K, {5, 2}}, {"T", T, {5, 2}}, {"S1(0)", S10, {5, 2}},

{"S2(0)", S20, {5, 2}}, {"σ1", σ1, {5, 2}}, {"σ2", σ2, {5, 2}}, {"r", r, {5, 3}}};

results =

{#, CallSpreadDoubleQuadrature[#, T, S10, S20, σ1, σ2, ρ, r] } & /@

Range[0, 20, 2.5];

g1 = Plot[CallSpreadBachelier[K, T, S10, S20, σ1, σ2, ρ, r],

{K, 0, 20},

Epilog → {OpenCircle /@ results},

PlotStyle → BLACK,

PlotLabel → Stl["Comparing Bachelier Approximation

(black line) \n with double quadrature (circles)"],

AxesLabel → {Stl["K"], Stl["C"]}, ImageSize → {400, 200}];

g2 = ParameterTable[params];

Grid[{{g1, g2}}, Frame → True] 

Out[44]=

5 10 15 20
K

2

3

4

5

6

7

C

Comparing Bachelier Approximation (black line)

with double quadrature (circles)

K 20.00

T 1.00

S1(0) 100.00

S2(0) 100.00

σ1 0.20

σ2 0.10

r 0.020

Derivation of σZ for Kirk’s approximation
Here, I use Mathematica to carry out the calculations described in Analytic Approximations for Spread

Options, C. Alexander and A. Venkatramanam (on web).

Although what follows is not a difficult hand calculation, it is useful to use Mathematica to carry it out.

Some reasons are

 You only think you understand it unless YOU can program it (Chaitin)

 It illustrates techniques that will be useful in other contexts.

 It is an exercise in deliberative practice of symbolic manipulation skills

The idea is to use the dynamics of S1 and S2 to derive the dynamics of Y and finally Z.

The details are easier to follow if a decorated notation is used.

Spread Options 02-14-11.nb 13

copyright © N T Gladd 2016

In[45]:= << Notation`

In[46]:= Symbolize S1 ; Symbolize S2 ; Symbolize S10 ; Symbolize S20 ;

Symbolize Y0 ;

Symbolize r


;

Symbolize σ

2 ;

Symbolize ρ ;

I define the stock price dynamics

In[48]:= w["Seqns"] = 
dS1

S1
⩵ r dt + σ1 dz1,

dS2

S2
⩵ r dt + σ2 dz2

Out[48]= 
dS1

S1
⩵ dt r + dz1 σ1,

dS2

S2
⩵ dt r + dz2 σ2

and also for Y = S2 + K.

In[49]:= w["Yeqn"] =  Y[t] ⩵ S2[t] + K, dY[t] ⩵ dS2[t] + K Exp-r T - t r dt

Out[49]= Y[t] ⩵ K + S2[t], dY[t] ⩵ dt ⅇ-r (-t+T) K r + dS2[t]

We have Z = S1

Y
. I make an Ito expansion to obtain a form for the dynamics of Z. The dependencies of

the dependent variable must be made explicit so that Mathematica can carry out the expansion.

In[50]:= w[1] = Z[S1, Y] ⩵ Series[Z[S1, Y], {S1, S10, 2}, {Y, Y0, 2}] // Normal

Out[50]= Z[S1, Y] ⩵ Z[S10, Y0] + (Y - Y0) Z(0,1)[S10, Y0] +
1

2
(Y - Y0)

2 Z(0,2)[S10, Y0] +

S1 - S10 Z(1,0)[S10, Y0] + (Y - Y0) Z(1,1)[S10, Y0] +
1

2
(Y - Y0)

2 Z(1,2)[S10, Y0] +

S1 - S10
2 1

2
Z(2,0)[S10, Y0] +

1

2
(Y - Y0) Z(2,1)[S10, Y0] +

1

4
(Y - Y0)

2 Z(2,2)[S10, Y0]

The differentials are introduced. Here is ϵ << 1 is an expansion parameter

In[51]:= w[2] =

w[1] /. {Z[S1, Y] → dZ + Z[S10, Y0], S1 → ϵ dS1 + S10, Y → ϵ dY + Y0} // ExpandAll

Out[51]= dZ + Z[S10, Y0] ⩵ Z[S10, Y0] + dY ϵ Z(0,1)[S10, Y0] +
1

2
dY2 ϵ2 Z(0,2)[S10, Y0] +

ϵ dS1 Z
(1,0)[S10, Y0] + dY ϵ2 dS1 Z

(1,1)[S10, Y0] +
1

2
dY2 ϵ3 dS1 Z

(1,2)[S10, Y0] +

1

2
ϵ2 dS1

2 Z(2,0)[S10, Y0] +
1

2
dY ϵ3 dS1

2 Z(2,1)[S10, Y0] +
1

4
dY2 ϵ4 dS1

2 Z(2,2)[S10, Y0]

14 Spread Options 02-14-11.nb

copyright © N T Gladd 2016

Rules can be used to truncate the expansion

In[52]:= w[3] = w[2] /. ϵ
n_/; n>2

→ 0 /. ϵ → 1

Out[52]= dZ + Z[S10, Y0] ⩵ Z[S10, Y0] + dY Z(0,1)[S10, Y0] +
1

2
dY2 Z(0,2)[S10, Y0] +

dS1 Z
(1,0)[S10, Y0] + dY dS1 Z

(1,1)[S10, Y0] +
1

2
dS1

2 Z(2,0)[S10, Y0]

Solve this for dZ and redefine the expansion point variables to make the notation more standard

In[53]:= w[4] = Solve[w[3], dZ][[1, 1]] /. Rule → Equal /. {Y0 → Y, S10 → S1}

Out[53]= dZ ⩵
1

2
2 dY Z(0,1)[S1, Y] + dY2 Z(0,2)[S1, Y] +

2 dS1 Z
(1,0)[S1, Y] + 2 dY dS1 Z

(1,1)[S1, Y] + dS1
2 Z(2,0)[S1, Y]

Introduce the explicit dependencies of Z = Z(S1, Y) = S1

Y

In[54]:= w["Zeqn"] = w[4] /. Z → #1  #2 & // Expand

Out[54]= dZ ⩵
dY2 S1

Y3
-
dY S1

Y2
-
dY dS1

Y2
+
dS1

Y

Recall the Y eqn and remove the [t] dependence that is no longer needed

In[55]:= w2[1] = w["Yeqn"][[2]] /. a_[t] → a // ExpandAll

Out[55]= dY ⩵ dt ⅇr t-r T K r + dS2

This is rewritten

In[56]:= w2[2] = (# / Y) & /@ w2[1] /. a_[t] → a // ExpandAll

Out[56]=
dY

Y
⩵

dt ⅇr t-r T K r

Y
+
dS2

Y

Introduce the dependence on S2

In[57]:= w2[3] = w2[2] /. Solve[w["Seqns"][[2]], dS2][[1, 1]] // ExpandAll

Out[57]=
dY

Y
⩵

dt ⅇr t-r T K r

Y
+
dt r S2

Y
+
S2 dz2 σ2

Y

Notice that K << S2, the first term on the rhs is small with respect to the second. Operationally, this can

be accomplished by just setting K to zero. Note that the lowest order K dependence is still embedded in

the definition of Y.

Spread Options 02-14-11.nb 15

copyright © N T Gladd 2016

In[58]:= w2[4] = w2[3] /. K → 0

Out[58]=
dY

Y
⩵

dt r S2

Y
+
S2 dz2 σ2

Y

Following Alexander and Venkatramanam, I introduce some variables of convenience.

In[59]:= def[r

] = r


⩵

r S2

Y
, def[σ


2] = σ


2 ⩵

σ2 S2

Y
, def[ρ] = ρ ⩵ 1 - ρ

2


Out[59]= r

⩵

r S2

Y
, σ

2 ⩵

S2 σ2

Y
, ρ ⩵ 1 - ρ2 

In[60]:= w["newYeqn"] = w2[4] /. Solvedef[r

], r[[1, 1]], Solvedef[σ


2], σ2[[1, 1]]

Out[60]=
dY

Y
⩵ dt r


+ σ

2 dz2

This approximate equation for the Y dynamics is now substituted into the equation for Z

In[61]:= w["Zeqn"]

Out[61]= dZ ⩵
dY2 S1

Y3
-
dY S1

Y2
-
dY dS1

Y2
+
dS1

Y

In[62]:= w3[1] = w["Zeqn"] /. {Solve[w["newYeqn"], dY][[1, 1]],

Solve[w["Seqns"][[1]], dS1][[1, 1]]} // ExpandAll

Out[62]= dZ ⩵
dt r S1

Y
-
dt r


S1

Y
-
dt2 r r


S1

Y
+
dt2 r

2 S1

Y
-
S1 σ


2 dz2

Y
-
dt r S1 σ


2 dz2

Y
+

2 dt r

S1 σ


2 dz2

Y
+
S1 σ


2
2 dz2

2

Y
+
S1 dz1 σ1

Y
-
dt r


S1 dz1 σ1

Y
-
S1 σ


2 dz1 dz2 σ1

Y

This must be truncated by using the Ito orderings

In[63]:= w3[2] = w3[1] /. dz1 dz2 → ρ dt, dz2
2
→ dt, dt dzi_ → 0, dt2 → 0

Out[63]= dZ ⩵
dt r S1

Y
-
dt r


S1

Y
+
dt S1 σ


2
2

Y
-
S1 σ


2 dz2

Y
-
dt S1 ρ σ


2 σ1

Y
+
S1 dz1 σ1

Y

or

In[64]:= w3[3] = (# / Z) & /@ w3[2] /. S1 → Z Y // Expand

Out[64]=
dZ

Z
⩵ dt r - dt r


+ dt σ


2
2
- σ

2 dz2 - dt ρ σ


2 σ1 + dz1 σ1

or

16 Spread Options 02-14-11.nb

copyright © N T Gladd 2016

In[65]:= w3[4] = w3[3][[1]] ⩵ Collect[w3[3][[2]], {dt, dz1, dz2}]

Out[65]=
dZ

Z
⩵ -σ


2 dz2 + dz1 σ1 + dt r - r


+ σ

2
2
- ρ σ


2 σ1

The next step is to introduce the explicit dependency on ρ

In[66]:= w3[5] = w3[4] /. dz1 → ρ dz2 + ρ dz3

Out[66]=
dZ

Z
⩵ -σ


2 dz2 + ρ dz2 + ρ dz3 σ1 + dt r - r


+ σ

2
2
- ρ σ


2 σ1

In order that the process for Z be a martingale, we must use Girsanov

In[67]:= w3[6] = w3[5] /. dz2 → dz4 + σ

2 dt // Expand

Out[67]=
dZ

Z
⩵ dt r - dt r


- σ

2 dz4 + ρ dz3 σ1 + ρ dz4 σ1

or

In[68]:= w3[7] = w3[6][[1]] ⩵ Collect[w3[6][[2]], {dt, dz3, dz4}]

Out[68]=
dZ

Z
⩵ dt r - r


 + ρ dz3 σ1 + dz4 -σ


2 + ρ σ1

Here, dz3 and dz4 are normally distributed and independent. An equivalent process can be defined

In[69]:= w3["finalZeqn"] = w3[7][[1]] ⩵ μZ dt + σZ dz5

Out[69]=
dZ

Z
⩵ dt μZ + dz5 σZ

To calculate μZ and σZ, we can use some new tools from Mathematica version 8.

To obtain μZ we take the expectation of the the rhs of the dZ equation for the case that the Gaussian

processes dz3 and dz4 are binormally distributed with zero correlation

In[70]:= w4[1] = μZ dt ==

Expectation[w3[7][[2]], {dz3, dz4}  BinormalDistribution[{0, 0}, {1, 1}, 0]]

Out[70]= dt μZ ⩵ dt r - r



or

In[71]:= w["μZ"] = Solve[w4[1], μZ][[1, 1]] /. Rule → Equal

Out[71]= μZ ⩵ r - r


Similarly, for the variance

Spread Options 02-14-11.nb 17

copyright © N T Gladd 2016

In[72]:= w4[3] =

σZ
2
⩵ Expectationw3[7][[2]] - μZ dt

2, {dz3, dz4}  BinormalDistribution[{0, 0},

{1, 1}, 0] /. w["μZ"] /. Equal → Rule // Expand

Out[72]= σZ
2 ⩵ σ


2
2
- 2 ρ σ


2 σ1 + ρ2 σ1

2 + ρ
2
σ1
2

or

In[73]:= w4[4] = w4[3] /. Solvedef[ρ], ρ[[1, 1]] // Expand

Out[73]= σZ
2 ⩵ σ


2
2
- 2 ρ σ


2 σ1 + σ1

2

Thus we have

In[74]:= w["σZ"] = Solve[w4[4], σZ][[2, 1]] /. Rule → Equal

Out[74]= σZ ⩵ σ

2
2
- 2 ρ σ


2 σ1 + σ1

2

Some numerics

In[75]:= Clear[ZT];

ZT[ϵ1_, ϵ2_, S10_, S20_, σ1_, σ2_, ρ_, r_, K_, T_] :=

S10 Exp r -
σ12

2
T + σ1 T ϵ1 

S20 Exp r -
σ22

2
T + σ2 T ρ ϵ1 + 1 - ρ

2
ϵ2  + K

18 Spread Options 02-14-11.nb

copyright © N T Gladd 2016

In[77]:= Module[{S10 = 100, S20 = 100, σ1 = 0.1,

σ2 = 0.4, ρ = 0.5, r = 0, K = 0, T = 1, ϵMax = 4},

Plot3D[ZT[ϵ1, ϵ2, S10, S20, σ1, σ2, ρ, r, K, T], {ϵ1, -ϵMax, ϵMax},

{ϵ2, -ϵMax, ϵMax}, PlotRange → All, PlotPoints → 30, Mesh → False,

AxesLabel → {Stl["ϵ1"], Stl["ϵ2"]}]]

Out[77]=

In[78]:= Module[{S10 = 100, S20 = 100, σ1 = 0.1,

σ2 = 0.4, ρ = 0.5, r = 0, K = 0, T = 1, ϵMax = 4},

NIntegrate[ZT[ϵ1, ϵ2, S10, S20, σ1, σ2, ρ, r, K, T] f[ϵ1] f[ϵ2],

{ϵ1, -ϵMax, ϵMax}, {ϵ2, -ϵMax, ϵMax}]]

Out[78]= 1.15004

In[79]:= ww[1] = Z ⩵ ExpectationZ0 Exp μ -
σ2

2
T + ϵ σ T , ϵ  NormalDistribution[0, 1];

ww[2] = Solve[ww[1], μ][[1, 1]] // Quiet

Out[80]= μ → ConditionalExpression
2 ⅈ π C[1] + Log Z

Z0


T
, C[1] ∈ Integers

In[88]:= Module[{S10 = 100, S20 = 100, σ1 = 0.1, σ2 = 0.4,

ρ = 0.5, r = 0.04, K = 5, T = 1, μNum, μAnal, results},

μNum = μNumerical[S10, S20, σ1, σ2, ρ, r, K, T] ;

μAnal = μAnalytical[S10, S20, σ1, σ2, ρ, r, K, T];

results = Table[{K, μAnalytical[S10, S20, σ1, σ2, ρ, r, K, T],

μNumerical[S10, S20, σ1, σ2, ρ, r, K, T]}, {K, 0, 10, 2.5}];

Grid[results, Frame → All]]

Out[88]=

0. 0. 0.14
2.5 0.00097561 0.132952
5. 0.00190476 0.126584
7.5 0.0027907 0.120802
10. 0.00363636 0.115532

Spread Options 02-14-11.nb 19

copyright © N T Gladd 2016

In[81]:= Clear[μAnalytical];

μAnalytical[S10_, S20_, σ1_, σ2_, ρ_, r_, K_, T_] :=

Module{rhat, Y0 = S20 + K},

rhat = r
S20

Y0
;

r - rhat

In[85]:= Clear[μNumerical];

μNumerical[S10_, S20_, σ1_, σ2_, ρ_, r_, K_, T_] :=

Module{Z, Y0 = S20 + K, Z0},

Z0 =
S20

Y0
;

Z = NExpectation[ZT[ϵ1, ϵ2, S10, S20, σ1, σ2, ρ, r, K, T],

{ϵ1, ϵ2}  BinormalDistribution[{0, 0}, {1, 1}, 0]];

1

T
Log

Z

Z0


In[87]:= Module[{S10 = 100, S20 = 100, σ1 = 0.1,

σ2 = 0.4, ρ = 0.5, r = 0, K = 0, T = 1, ϵMax = 4},

NExpectation[ZT[ϵ1, ϵ2, S10, S20, σ1, σ2, ρ, r, K, T],

{ϵ1, ϵ2}  BinormalDistribution[{0, 0}, {1, 1}, 0]]]

Out[87]= 1.15027

Functions

In[89]:= Clear[f];

f[ϵ_] :=
1

2 π

Exp-
ϵ2

2


In[102]:= Clear[];

::usage = "Cumulative standard normal distribution function";

[z_?NumberQ] := 1  2 1 + Erfz  2  // N;

In[91]:= Clear[ParameterTable];

ParameterTable[pList_] :=

Module{i, nList = {}, name, value, description, format, NF, SN},

SN[x_] := Style[x, 10, Bold, FontFamily → "Helvetica"];

NF[x_, f_] := If[f[[2]] ⩵ 0, Round[x], NumberForm[x, f]];

For[i = 1, i ≤ Length[pList], i++,

{name, value, format} = pList[[i]];

AppendTo[nList,

{Item[SN[name]], Item[SN[NF[value, format]], Alignment → Right]}]];

GridnList,

Dividers → {{2 → True}, Center}, Spacings → {1, {2}}, 1  3

20 Spread Options 02-14-11.nb

copyright © N T Gladd 2016

In[93]:= Clear[Stl];

Stl[x_] := Style[x, Bold, FontFamily → "Helvetica"]

In[95]:= BLACK = Directive[Thick, Black];

BLUE = Directive[Thick, Blue];

RED = Directive[Thick, Red];

GREEN = Directive[Thick, Green];

In[99]:= SetOptions[Plot, PlotStyle → BLACK, LabelStyle → Directive[Bold, "Helvetica"]];

SetOptions[Plot3D, LabelStyle → Directive[Bold, "Helvetica"]];

SetOptions[Graphics, LabelStyle → Directive[Bold, "Helvetica"]];

References to earlier notebooks
Spread Option model for Gateway 07 - 01 - 10. nb

Checking FEA Kirk Model 06-09-10.nb

Spread Option model for Power Plant Hedge 05-17-10.nb

SpreadOption Expected 05-3-10.nb

Spread Option - Bills Hueristic 05-11-10.nb

Put Spread 04-07-10.nb

Energy Derivatives and Spread Options 06-08-09.nb

PowerGen Spread Option 01-21-10.nb

PGE Demos 06-03-09.nb

Debugging Single Quadrature 06-03-09.nb

Spread Options ala Alexander 05-18-09.nb

Spread Option Approximations R3 05-13-09.nb

Bachelier Spread Option R3 (for Joe Isaac) 05-07-09.nb

Spread Options 02-14-11.nb 21

copyright © N T Gladd 2016

